Math 4650 Topic 1 - Properties of the seal numbers

Def: A field is a set F with two operations, addition and multiplication, such that: (A1) If X, y EF, then X+y EF (A2) For all X, YEF, we have X+Y=Y+X (A3) For all X,y,ZEF, we have x+(y+z)=(x+y)+z (A4) F contains an element O where 0+x=0 for all x E F. (AS) For every XEF there exists an element  $-X \in F$  where x + (-x) = 0. (MI) If X, YEF, then XyEF. (M2) If X, y EF, then Xy=yx (M3) If  $x, y, z \in F$ , then x(yz) = (xy)z(M4) F contains an element 1 where 1=0 and 1x=x for all xEF (M5) If XEF and X=+0 then there exists an element x'EF where xx'=1. (D1) IF X, y, ZEF, then X(y+Z)=Xy+XZ

Assumption: We will assume that the  
set of real numbers 
$$\mathbb{R}$$
 exists  
and that it is an ordered field.  
 $-\sqrt{2}$   
 $-3$   $-2$   $-1$   $0$   $\frac{1}{2}$   $\frac{1}{3}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{3}$   $\frac{1}$ 

From the ordered field properties

-

If there is time at the end of the semester I will show you how to construct IR from Q using "Dedekind cuts". We can then derive the field and order properties.

$$\frac{Def: (Interval notation)}{(a,b) = \{ x \mid x \in \mathbb{R}, a < x < b \}} \xrightarrow{(a,b) = \{ x \mid x \in \mathbb{R}, a < x < b \}} \xrightarrow{(a,b) = \{ x \mid x \in \mathbb{R}, a \leq x < b \}} \xrightarrow{(a,b) = \{ x \mid x \in \mathbb{R}, a < x < b \}} \xrightarrow{(a,b) = \{ x \mid x \in \mathbb{R}, a < x < b \}} \xrightarrow{(a,b) = \{ x \mid x \in \mathbb{R}, a < x < b \}}$$

We will also assume the following subsets  
of IR have their usual algebraic/order properties  
set of natural numbers:  
$$IN = \{0,1,2,3,4,5,...\}$$
  
set of integers:  
 $Z = \{...,-3,-2,-1,0,1,2,3,...\}$   
set of rational numbers:  
 $Q = \{\prod_{n=1}^{m} | m, n \in \mathbb{Z}, n \neq 0\}$ 

Def: Let S⊆IR where S is non-empty. . We say that b is an <u>upper bound</u> for S if x≤b for all xES. If there exists an upper bound for S then we say that S is bounded from above. • If b is an upper bound for S and b < c for all other upper bounds c of S, then b is called the least upper bound for S, or supremum of S, and we write b=sup(S) · We say that b is a lower bound fir S if b≤x for all xes. · If there exists a lower bound for S then we say that S is bounded from below. • If b is a lower bound for S and b ≤ c for all other lower bounds c of S, then b is called the greatest lower bound for S, or infimum of S, and we write b=inf(S)





Theorem: Let 
$$S \subseteq \mathbb{R}$$
 with  $S \neq \phi$ .  
If  $svp(s)$  exists then it is unique  
If  $inf(s)$  exists then it is unique.  
proof; HW

The Completeness Axiom for IR Let SSIR be non-empty. you only have If S is bounded from above, to assume this part of the then sup(s) exists in IR. completeness If S is bounded from below, axiom. The second part about inf's then inf(s) exists in IR. can be proven to follow from it. see the proof  $E_{X}: S = [0, Z]$ at the end of these S is bounded from above. notes. sup(s) = 2 is in IR S is bounded from below inf(s)=0 is in  $\mathbb{R}$ but it doesn't Note: CR is an ordered field Satisfy the completeness axium. is bounded from above  $S = \{X \mid X \in \mathbb{Q}, 0 < X, X^2 < 2\}$ but the supremum is JZ which is not in Q.

Theorem (Archimedian property) Let x be a real number. Then there exists  $n \in IN$  with x < n  $E_{x:} x = 20\pi \approx 62.83$ n = 63

<u>proof:</u> Suppose there exists  $x \in \mathbb{R}$  where  $n \le x$  for all Then  $\mathbb{N} \le \mathbb{R}$  is bounded from above. By the completeness axion  $\alpha = \sup(\mathbb{N})$  exists. By the completeness axion  $\alpha = \sup(\mathbb{N})$  exists. Then,  $\alpha - 1$  is not an upper bound for  $\mathbb{N}$ . Then,  $\alpha - 1$  is not an upper bound for  $\mathbb{N}$ . So there exists  $n \in \mathbb{N}$  with  $\alpha - 1 < \mathbb{N}$ . But then  $n+1 \in \mathbb{N}$  and  $\alpha < n+1$ . This contradicts  $\alpha = \sup(\mathbb{N})$ .

Theorem: (Inf-sup Theorem)  
Let 
$$S \subseteq IR$$
 be non-empty.  
(a) Suppose b is an upper bound for S.  
Then, b is the supremum of S  
if and only if for every  $\varepsilon > 0$   
there exists  $x \in S$  satisfying  
 $b - \varepsilon < x \leq b$ .  
(b) Suppose b is a lower bound for S.  
Then, b is the infimum of S  
Then, b is the infimum of S  
if and only if for every  $\varepsilon > 0$   
if and only if for every  $\varepsilon > 0$   
there exists  $x \in S$  satisfying  
 $b \leq x < b + \varepsilon$   
Suppose b is a lower bound for R

Let 
$$\varepsilon = b - c > 0$$
.  
By our assumption  
three exists  $x \in S$   
with  $b - \varepsilon < x \le b$   
So,  $c < x$  with  $x \in S$ .  
Thus,  $c$  is not an upper bound for  $S$ .  
Thus,  $c$  is not an upper bound for  $S$ .  
There fore,  $b$  is the least upper bound  
for  $S$ .  
The proof of (b) is similar to (a).

Ex: Let 
$$S = \sum n | n \in \mathbb{N}$$
  
We know that  $D$  is a lower bound  
for  $S$  since  $0 < \frac{1}{n}$  for all  $n \in \mathbb{N}$ .  
Let's show that  $D = \inf(S)$ .  
Let  $E > 0$ .  
We need to find  
 $x \in S$  with  $0 \le x < 0 t \ge$ .  
Pick  $n_0 \in \mathbb{N}$  with  $n_0 > \frac{1}{2}$ .  
Then,  $\frac{1}{n_0} < \sum$   
Set  $x = \frac{1}{n_0}$ .  
Then,  $x \in S$  and  $0 \le x < 0 t \ge$ .  
Thus, by the  $\inf(S)$ .

$$\frac{\text{Def: Let } x \in \mathbb{R}.}{\text{The absolute value of x is}}$$
$$\frac{1}{|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}}$$

$$\frac{E_{x'}}{|-5,1|} = |7,23| = 5,1$$

$$\boxed{\begin{array}{c} \hline \text{Theorem:}}\\ \text{Let } a_{j}b_{j}c \in [\mathbb{R} \text{ with } c > 0.\\ \hline \text{Then:}\\ \hline \begin{array}{c} 0 & |ab| = |a| \cdot |b|\\ \hline \begin{array}{c} 0 & |ab| = \frac{|a|}{161} & \text{if } b \neq 0\\ \hline \begin{array}{c} 0 & |a| \leq c & \text{iff } -c \leq a \leq c\\ \hline \begin{array}{c} 0 & |a| \leq c & \text{iff } -c \leq a < c\\ \hline \begin{array}{c} 0 & |a| < c & \text{iff } -c < a < c\\ \hline \begin{array}{c} 0 & |a| < c & \text{iff } -c < a < c\\ \hline \begin{array}{c} 0 & |a| < c & \text{iff } -c < a < c\\ \hline \begin{array}{c} 0 & |a| < c & \text{iff } -c < a < c\\ \hline \begin{array}{c} 0 & |a| < b| \\ \hline \begin{array}{c} 0 & |a| - |b|| \leq |a - b| \\ \hline \end{array} \end{aligned}} \end{aligned}$$

6 HW.



A frequently used fact is this:

Corollary: Let x,y, EER with E70. |x-y|<E iff y-e<x<y+e Then.



We will frequently write:  $0 < |x - y| < \varepsilon$ Note: 0 < |x - y| means  $x \neq y$ . Note:  $0 < |x - y| < \varepsilon$  looks like this: Thus,  $0 < |x - y| < \varepsilon$  looks like this:



Theorem: (Q is dense in R)  
Given 
$$a_{jb} \in \mathbb{R}$$
 with  $a < b_{j}$  there exists  
 $\underline{m} \in \mathbb{Q}$  with  $a < \underline{m} < b_{j}$ .  
Proof:  
By the Archimedean property there exists  
 $n \in \mathbb{N}$  with  $\underline{l}_{-a} < n$ .  
So,  $\underline{l}_{-a} < b - a_{j}$ .  
Claim: There exists  $m \in \mathbb{Z}$  with  $m - l \le na < m$   
 $\frac{p_{f}}{r}$  of claim:  
Let  $x = na_{j}$ .  
Suppose  $n \ge 70$ .  
By the Archimedean principle there exists a  
Suppose  $n \ge 70$ .  
By the Archimedean principle there exists a  
Suppose  $n \ge 70$ .  
By the Archimedean principle there exists a  
Now suppose  $n \ge 70$ .  
Let  $m = k$ . Then,  $m - l \le na < m$   
Now suppose  $na < 0$ .  
Let  $k$  be the smallest natural number  
with  $-na \le k$ .  
Then, setting  $m = -k + l$  we get  $m - l \le na < m$ 

Since na<m we get a < m.

Also,  

$$m \le na+l < n(b-\frac{1}{n})+l = nb$$
  
 $m \le na+l < n(b-\frac{1}{n})+l = nb$   
 $m \le na+l < b-a$   
 $n = 1 \le b-a$   
Hence  $a \le n \le b$ .

Theorem: Given a, b ∈ R with a < b there exists an irrational number x with acx<b. The irrational numbers are R-Q In 2450/3450 you show for example that JZ is irrational. From 3450, the set (a,b) is vacountable. proof: Since Q is countable, we know Q((a,b) is countable since its contained in Q. Thus,  $(a,b) - Q \cap (a,b) \neq \phi$ . Let  $x \in (a,b) - Ch (a,b)$ . Then x is icrational and a < x < b.

This next part is optional. It shows we only had to assume half of the completeness axiom

Suppose we only assume the following  
part of the completeness axiom for 
$$\mathbb{R}$$
:  
If A is a non-empty subset of  
 $\mathbb{R}$  that is bounded from above,  
then  $\sup(A)$  exists in  $\mathbb{R}$ .  
We now show that this will imply the following:  
If B is a non-empty subset of  
 $\mathbb{R}$  that is bounded from below,  
then inf(B) exists in  $\mathbb{R}$ .  
Proof: (from Rudin's book)  
Let B =  $\mathbb{R}$  with  $B \neq \emptyset$ .  
Let B =  $\mathbb{R}$  with  $B \neq \emptyset$ .  
Let  $\mathbb{E} = \{y \mid y \in \mathbb{R} \text{ and } y \text{ is a lower bound for B}\}$ .  
Let  
 $\mathbb{L} = \{y \mid y \in \mathbb{R} \text{ and } y \text{ is a lower bound for B}\}$ .  
Note that if  $x \in B$  then  $y \neq x$  for all  $y \in \mathbb{L}$ .  
Note that if  $x \in B$  then  $y \neq x$  for all  $y \in \mathbb{L}$ .  
Note that if  $x \in A$  this implies that every  
 $x$  in B is an upper bound for  $\mathbb{L}$ .

Since L # \$ and bounded from above We know that  $\alpha = \sup(L)$  exists in  $\mathbb{R}$ . We will show that & is the infimum of B If 8<2 then by def of supremum we must have & is not an upper bound for L. So, if 8< x then 8 & B. Thus,  $x \leq x$  for all  $x \in B$ . Therefore, & is a lower bound for B Why is a the greatest lower bound for B? and *xel*. Suppose B satisfies 2<B. Then, since & is the supremum of L We must have that BEL. That is, if  $\alpha < \beta$  then  $\beta$  is not a lower bound for B. So all lower bounds B for B must satisfy  $B \leq d$ . Therefore  $\alpha = \inf(B)$ .  $//\lambda$